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TECHNICAL NOTE

Stanley J. Bajic,1 Ph.D.; David B. Aeschliman,1 Ph.D.; Nathan J. Saetveit,1 B.S.;
David P. Baldwin,1 Ph.D.; and R. S. Houk,1 Ph.D.

Analysis of Glass Fragments by Laser
Ablation-Inductively Coupled Plasma-Mass
Spectrometry and Principal Component Analysis∗

ABSTRACT: Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is used to differentiate glass samples with similar
optical and physical properties based on trace elemental composition. Laser ablation increases the number of elements that can be used for
differentiation by eliminating problems commonly associated with dissolution and contamination. In this study, standard residential window and
tempered glass samples that could not be differentiated by refractive index or density were successfully differentiated by LA-ICP-MS. The primary
analysis approach used is Principal Component Analysis (PCA) of the complete mass spectrum. PCA, a multivariate analysis technique, provides
rapid analysis of samples without time-consuming pair-wise comparison of calibrated analyses or prior knowledge of the elements present in the
samples. Probabilities for positive association of the individual samples are derived from PCA. Utilization of the Q-statistic with PCA allowed us
to distinguish all samples within the set to a certainty greater than the 99% confidence interval.

KEYWORDS: forensic science, glass comparisons, elemental analysis, laser ablation-inductively coupled plasma-mass spectrometry, principal
component analysis

Glass fragments are often recovered as trace evidence during
criminal investigations. Characterization is normally accomplished
by measuring the physical and optical properties of thickness, den-
sity, and refractive index. Advances in the quality of glass man-
ufacturing technology have made further discrimination, such as
identification of a suspected source, more difficult as the range of
densities and refractive indices have narrowed within glass sub-
types. Glasses from the same subtype may have the same gross
elemental composition, but can have different trace and ultra-trace
elemental signatures. An obvious significant source of this vari-
ation lies in the trace and ultra-trace elemental compositions of
raw materials used in the manufacturing process, which is depen-
dent on the source of the raw materials (e.g., mined, recycled).
The presence, absence, and relative abundance of elements in spe-
cific association patterns provide a unique means of the trace ele-
mental signatures for distinguishing samples and is easily under-
standable.

Consequently, scientists have been investigating the use of
elemental analysis techniques, particularly inductively coupled
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plasma-atomic emission spectrometry (1) and -mass spectrometry
(2–7), for discrimination or differentiation between glasses within a
particular class (e.g., window glass) based on their trace elemental
contents. The implementation of laser ablation as a sampling tech-
nique has also been investigated to simplify and extend elemental
analyses to much smaller sizes, typical of trace samples encountered
(8–11). Laser ablation-inductively coupled plasma-mass spectrom-
etry (LA-ICP-MS) is rapid, eliminates the need for extensive sample
preparation, and is virtually a nondestructive technique due to the
extremely small amount of material consumed (several hundred
nanograms) (12), allowing for the possibility of further analysis of
questioned samples by corroborative techniques. Furthermore, LA
increases the number of analytically useful elements, compared to
ICP-MS with sample dissolution and nebulization, by eliminating
problems with some elements due to poor dissolution and contam-
ination that may occur in a standard solution nebulization ICP-MS
analysis.

In order to exploit the large amount of information collected us-
ing this technique, the criteria and protocols for the comparison
and differentiation of glass fragments from different sources based
on LA-ICP-MS and Principal Component Analysis (PCA) tech-
niques are presented. PCA is a statistical data reduction technique
that examines the variance patterns in complex multidimensional
datasets, providing clear ways for visual comparisons by allow-
ing interpretation to be done graphically. A significant advantage
of this type of analysis is that spectral comparison by PCA re-
sults in a quantitative statistical comparison (yielding probabili-
ties) without the need for elemental calibration, matrix-matched
standards, or prior knowledge of the elements present in the
sample.
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TABLE 1—Glass samples undifferentiated by refractive index.

Group A
Sample 1010 Window ND = 1.5148 NF = 1.5212 NC = 1.5121 · · ·
Sample 1030 Tempered ND = 1.5149 NF = 1.5211 NC = 1.5123 · · ·
Group B
Sample 1024 Window ND = 1.5155 NF = 1.5216 NC = 1.5130 · · ·
Sample 1032 Window ND = 1.5157 NF = 1.5221 NC = 1.5130 · · ·
Group C
Sample 10 Window ND = 1.5169 NF = 1.5232 NC = 1.5143 D = 2.4871
Sample 8 Window ND = 1.5171 NF = 1.5234 NC = 1.5145 D = 2.4936
Sample 1002 Laminated ND = 1.5171 NF = 1.5235 NC = 1.5144 D = 2.4909
Sample 11 Tempered ND = 1.5172 NF = 1.5237 NC = 1.5145 D = 2.4868

Group D
Sample 1035 Plate ND = 1.5175 NF = 1.5238 NC = 1.5148 · · ·
Sample 1033 Window ND = 1.5176 NF = 1.5240 NC = 1.5149 D = 2.4946
Sample 1009 Window ND = 1.5177 NF = 1.5239 NC = 1.5151 D = 2.5016

Group E
Sample 1003 Tempered ND = 1.5183 NF = 1.5246 NC = 1.5156 D = 2.4911
Sample 4 Wire Reinforced ND = 1.5185 NF = 1.5247 NC = 1.5159 D = 2.4940
Sample 1029 Tempered ND = 1.5185 NF = 1.5250 NC = 1.5158 · · ·
Sample 1013 Window ND = 1.5186 NF = 1.5249 NC = 1.5159 D = 2.4939
Sample 1036 Tempered ND = 1.5187 NF = 1.5251 NC = 1.5159 · · ·
Sample 1001 Tempered ND = 1.5189 NF = 1.5255 NC = 1.5161 D = 2.4942

Group F
Sample 1 Gray Window ND = 1.5196 NF = 1.5259 NC = 1.5170 D = 2.4975
Sample 1017 Tempered ND = 1.5197 NF = 1.5263 NC = 1.5169 D = 2.4964

Group G
Sample 14 Wire Reinforced ND = 1.5127 NF = 1.5292 NC = 1.5199 · · ·
Sample 16 Window ND = 1.5129 NF = 1.5294 NC = 1.5201 · · ·
Group H
Sample 1006 Window ND = 1.5138 NF = 1.5302 NC = 1.5210 · · ·
Sample 1034 Dark Gray ND = 1.5138 NF = 1.5302 NC = 1.5210 · · ·
Group I
Sample 18 Patterned ND = 1.5147 NF = 1.5313 NC = 1.5219 D = 2.5250
Sample 17 Window ND = 1.5148 NF = 1.5311 NC = 1.5221 D = 2.5139
Sample 19 Plate ND = 1.5149 NF = 1.5314 NC = 1.5221 D = 2.5210
Differentiation Criteria ND ± 0.0002 NF ± 0.0004 NC ± 0.0004

Methods

The Illinois State Police Science Command supplied 26 glass
samples for analysis along with their measured refractive indices
and density values, if available. Glass samples that could not be
differentiated by refractive index were separated into groups. These
groups are listed in Table 1.

ICP-MS

The mass spectrometer used in this study was a Thermo Finnigan
Element 1 ICP-MS. This device employs magnetic and electrostatic
analyzers configured in a reverse Nier-Johnson geometry to provide
both mass and kinetic energy selection. The mass spectrometer has
excellent detection limits (80 ppq aqueous 115In), linear dynamic
range (>109), and sensitivity (5 × 109 cps ppm-1 aqueous 115In at
low resolution) for ultra-trace analysis of solid fragments by laser
ablation. For this study, the ICP-MS was operated in low resolution
(R = 300).

The ICP load coil was “shielded” (CD-1 torch, Thermo Finnigan)
to improve the ion transmission compared to a standard quartz
ICP torch. With the shield grounded, the ICP is sustained only by
inductive coupling, and the secondary discharge between the ICP
and sampling cone is attenuated. Compared to analyses performed
with a standard ICP torch, the shielded torch improves sensitivity
by a factor of 5 to 20 (depending upon mass) while maintaining
the extremely low background and high precision of the double-
focusing instrument (13).

Laser Ablation

An in-house constructed argon fluoride (ArF) laser ablation
system was used in this study. This system consists of an MPB
Technologies Inc., PSX-100 excimer laser. The ArF laser emits at
193 nm, with an average power of 4.0 mJ pulse−1 at a repetition rate
of 10 Hz. The ablation cell was mounted on a computer controlled
xy-translation stage (Oriel, Inc.).

An argon flow rate of 1.3 L min−1 was used to transport the
ablated particles to the plasma through a Tygon tube approximately
1.5-m long × 3-mm internal diameter. For the sampling position
and power used to operate the ICP, this gas flow rate maximized
atomic ion signals for all the elements measured during ablation of
a glass standard (NIST 612).

Data Analysis for Comparison of Samples

A low-resolution full mass spectrum in the 4 to 240 mass range
was acquired for each sample. Five spectra were acquired for each
sample while ablating a raster pattern on the surface of the sample.
The side of the glass fragment selected for analysis was the non-
“float” side, determined by using a handheld UV-lamp. The float
side fluoresced when exposed to UV light. The full mass spectrum
was used for analysis (i.e., no pre- or post-selection of isotopes was
done).

Data preprocessing consisted of peak-area integration, back-
ground subtraction, and arrangement of the data into a form suitable
for multivariate analysis. The data were saved as ASCII text and
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imported into Matlab v 6.1 (the MathWorks, Inc., Natick, MA) for
PCA using PLS Toolbox 2.01f (Eigenvector Research, Manson,
WA).

Principal component analysis for chemical and spectral analysis
has been reviewed elsewhere (14). Basically, it is a multivariate
data reduction method that examines the variance patterns within
a multidimensional dataset. The dimensionality of the dataset is
reduced while retaining a major portion of the original information.
This is accomplished by decomposing the correlation matrix of the
variables (i.e., measured elemental MS signals) of the data into a
new set of axes, principal components, which define the directions
of the major variances in the data set. The principal components
are linear combinations of the variables (elements) and comprise
three matrices that define each of the principal components: scores,
loadings, and residuals. These matrices facilitate visualization of
the relationships of the samples in the dataset and interpretation
of the data. Scores describe the variance or relationship among the
samples in the dataset and represent the contribution of the principal
components in each sample. Loadings represent the contribution
of the variables to the principal components and describe which
variables (or masses (i.e., m/z ratio)) are responsible for the variance
in the data. The residuals represent random variations within the
dataset and are generally attributed to noise.

Samples within a particular group were compared by generating a
PCA model for the data from one sample. Spectra for other samples
in the group were then compared to the model. The difference
or variance of the sample spectra from the developed model was
determined by the Q-statistic, which indicates how well each sample
conforms to the model. The Q-statistic is simply the measure of
the difference, or residual, between the mass spectrum from one
sample and its projection into the PCA model created from the data
for another sample. Probabilities for each of the samples within a
particular group were calculated from the Q-statistic. More in-depth
discussion of the Q-statistic can be found in reference (15).

Results and Discussion

The refractive indices and densities, if available, of glass sam-
ples used in this study are listed in Table 1. Two pieces of glass
are considered indistinguishable if their refractive indices over-
lap within the following ranges: ND ± 0.0002, NF ± 0.0004, and
NC ± 0.0004. Based on these refractive index criteria, the glass
samples within groups A, B, D, F, G, H, and I are indistinguish-
able. Within Groups C and E, some differentiation for some of the
samples is possible. However, there are five possible pairs of glass
samples in Group C that cannot be differentiated: 8 and 10, 8 and
1002, 10 and 1002, 8 and 11, and 11 and 1002. If the density of
these samples were known, then all five pairs might possibly be
differentiable. However, in typical casework, sample fragments are
often not large enough to determine density. In group E, there are
nine possible pairs of glass samples that cannot be differentiated
by refractive index alone: 4 and 1003, 4 and 1029, 1003 and 1029,
4 and 1013, 4 and 1036, 1013 and 1029, 1013 and 1036, 1029 and
1036, 1001 and 1036.

Principal component analysis was performed on the acquired
LA-ICP-MS mass spectra of each of the datasets and groups (26
glass samples separated into 9 groups). In all cases more than 99%
of the variance within a group was accounted for in the first two
principal components. To illustrate how PCA is used for pair-wise
comparisons of samples, the score plot of the six samples (five
repetitions for each sample) in Group E is shown in Fig. 1. Three
of the glass samples (4, 1013, and 1029) cluster into well defined,
separate groups in the score plot. They are largely differentiated
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FIG. 1—Score plot for glass samples in Group E. The PCA was per-
formed on all six samples of the group. The numbers in parentheses indicate
the amount of variance captured by the principal components.
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FIG. 2—Score plot for glass samples 1001 and 1036. The PCA was
performed on these two samples. The numbers in parentheses indicate the
amount of variance captured by the principal components.

by differences in the first PC. This separation indicates that the
samples within those groups are different from the other members
of Group E, based on the acquired mass spectra (i.e., elemental
composition). The other three samples (1001, 1003, and 1036)
from Group E are distinguished from the former samples by PC 2
and appear to occupy the same area on the score plot, indicating that
they are not distinguishable from one another using PCA when all
six of the samples are used in the model. In order to determine if the
overlapping samples are distinguishable from each other, additional
analysis of the data from these three samples is required.

Since samples 1001 and 1036 overlap and are not distinguishable
in the score plot in Fig. 1, a new PCA is performed using the existing
data from just these two samples. The resulting score plot (Fig. 2)
shows the new model based on just the two samples (five repe-
titions each). The two samples clearly group separately from one
another in the score plot, indicating that they have distinguishable
elemental compositions. Performing additional PCA comparisons
with sample-pair combinations incorporating sample 1003 yields
analogous score plots, indicating that the three samples have dif-
ferent elemental compositions and are therefore distinguishable.
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TABLE 2—Probability of sample being indistinguishable from model.

Group A
s1010 s1030

Model 1010 · · · <10−14

Model 1030 <10−14 · · ·
Group B

s1024 s1032
Model 1024 · · · <10−14

Model 1032 <10−14 · · ·
Group C

S8 s10 s11 s1002
Model 8 · · · <10−14 <10−14 <10−14

Model 10 7 × 10−11 · · · <10−14 <10−14

Model 11 <10−14 <10−14 · · · <10−14

Model 1002 1 × 10−07 3 × 10−04 <10−14 · · ·
Group D

s1009 s1033 s1035
Model 1009 · · · 7 × 10−11 <10−14

Model 1033 <10−14 - <10−14

Model 1035 8 × 10−07 3 × 10−08 · · ·
Group E

s4 s1001 s1003 s1013 s1029 s1036
Model 4 · · · <10−14 <10−14 <10−14 5 × 10−04 <10−14

Model 1001 <10−14 · · · 5 × 10−07 5 × 10−12 5 × 10−13 2 × 10−06

Model 1003 <10−14 3 × 10−05 · · · 1 × 10−12 2 × 10−11 6 × 10−04

Model 1013 <10−14 <10−14 <10−14 · · · <10−14 <10−14

Model 1029 8 × 10−07 <10−14 <10−14 <10−14 · · · <10−14

Model 1036 <10−14 9 × 10−12 2 × 10−07 <10−14 1 × 10−11 · · ·
Group F

s1 s1017
Model 1 · · · 5 × 10−09

Model 1017 2 × 10−12 · · ·
Group G

s14 s16
Model 14 · · · <10−14

Model 16 3 × 10−07 · · ·
Group H

s1006 s1034
Model 1006 · · · 7 × 10−07

Model 1034 <10−14 · · ·
Group I

s17 s18 s19
Model 17 · · · <10−14 <10−14

Model 18 <10−14 · · · <10−14

Model 19 9 × 10−07 <10−14 · · ·

The elemental differences between samples can also be qual-
itatively ascertained from the principal component analysis. This
information is contained in the loadings and represents the presence
or relative difference of elements in the sample-to-sample compar-
isons. Figure 3 shows the Q-residual elemental contribution of the
second repetition of sample 1001 compared to the PCA model of
sample 1036. This plot shows that the major elemental differences
between samples 1001 and 1036 is in the amount of Mg, Ca, Ti,
Fe, Cd, In, Sb and Sn present. From the plot, sample 1001 is char-
acterized as having more Sn and less Mg, Ca, Ti, Fe, Cd, In, and
Sb than sample 1036.

The assignment of a quality value or probability for a pair-wise
comparison utilizing this multivariate analysis approach requires
that a sample dataset be compared to a PCA-generated model of
another sample (or group of samples) in order to determine how
well the sample data fit the model. The difference in the fit between
the sample and the model is known as the Q-statistic, or Q-residual.
From the Q-statistic one can calculate the probability of a sample
being indistinguishable from the model.

Table 2 lists the calculated probabilities for the sample-to-sample
comparisons for all of the groups. The probabilities are calculated
from the average Q-statistic for all of the repetitions in each sample.
For example, consider the overlapping samples in the Group E score
plot (Fig. 1); when sample 1001 is compared to the sample 1003
PCA model, 1001 has no better than a 1 in 105 chance of being the
same as sample 1003. Similarly, sample 1003 has no better than a 1
in 107 chance of being the same as sample 1001 when sample 1003
is compared to the sample 1001 PCA model. The difference in the
probabilities, although only two samples are being compared, arises
from the scatter within several repetitions of the mass spectra. PCA
automatically assesses precision.

Conclusion

This work demonstrates LA-ICP-MS as a rapid and reliable tech-
nique the forensic scientist can use to uniquely identify, character-
ize, and perform pair-wise comparisons of glass trace evidence
found at a crime scene, with a high level of certainty. Furthermore,
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FIG. 3—Plot showing the Q-residual contribution of the elements from the second repetition of sample 1001 compared to the PCA model of sample 1036.

analyzing mass spectrometry data by PCA allows the forensic scien-
tist to perform a quantitative statistical comparison (yielding con-
fidence intervals) for positive association of a questioned glass
sample based on its trace elemental composition.

While quantitative elemental analysis is possible with LA-ICP-
MS, a significant advantage of using PCA to compare samples
is the elimination of the need for elemental calibration and
matrix-matched standards. PCA is essentially a pattern-matching
analysis and does not rely on calibration of the spectra to known
concentrations. This reduces the need for expensive, hazardous, and
costly materials and procedures for analysis. A second significant
advantage is the elimination of bias due to pre-selection of ele-
ments. Since the analyst does not need to decide in advance which
elements to calibrate and determine, the full mass spectrum may be
used, and the statistical comparison will determine which elements
are significant for elimination or inclusion in the analysis.
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